Role of Endoplasmic Reticulum Stress in α-TEA Mediated TRAIL/DR5 Death Receptor Dependent Apoptosis

نویسندگان

  • Richa Tiwary
  • Weiping Yu
  • Jing Li
  • Sook-Kyung Park
  • Bob G. Sanders
  • Kimberly Kline
چکیده

BACKGROUND Alpha-TEA (RRR-alpha-tocopherol ether-linked acetic acid analog), a derivative of RRR-alpha-tocopherol (vitamin E) exhibits anticancer actions in vitro and in vivo in variety of cancer types. The objective of this study was to obtain additional insights into the mechanisms involved in alpha-TEA induced apoptosis in human breast cancer cells. METHODOLOGY/PRINCIPAL FINDINGS alpha-TEA induces endoplasmic reticulum (ER) stress as indicated by increased expression of CCAAT/enhancer binding protein homologous protein (CHOP) as well as by enhanced expression or activation of specific markers of ER stress such as glucose regulated protein (GRP78), phosphorylated alpha subunit of eukaryotic initiation factor 2 (peIF-2alpha), and spliced XBP-1 mRNA. Knockdown studies using siRNAs to TRAIL, DR5, JNK and CHOP as well as chemical inhibitors of ER stress and caspase-8 showed that: i) alpha-TEA activation of DR5/caspase-8 induces an ER stress mediated JNK/CHOP/DR5 positive amplification loop; ii) alpha-TEA downregulation of c-FLIP (L) protein levels is mediated by JNK/CHOP/DR5 loop via a JNK dependent Itch E3 ligase ubiquitination that further serves to enhance the JNK/CHOP/DR5 amplification loop by preventing c-FLIP's inhibition of caspase-8; and (iii) alpha-TEA downregulation of Bcl-2 is mediated by the ER stress dependent JNK/CHOP/DR5 signaling. CONCLUSION Taken together, ER stress plays an important role in alpha-TEA induced apoptosis by enhancing DR5/caspase-8 pro-apoptotic signaling and suppressing anti-apoptotic factors c-FLIP and Bcl-2 via ER stress mediated JNK/CHOP/DR5/caspase-8 signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of endoplasmic reticulum stress by bortezomib sensitizes myeloma cells to DR5-mediated cell death

TNF-related apoptosis-including ligand/Apo2 (TRAIL)-mediated immunotherapy is an attractive anti-tumor modality with high tumor specificity. In order to improve its therapeutic efficacy, we further need to implement a novel maneuver for sensitization of malignant cells to TRAIL. Bortezomib (BTZ), a novel anti-myeloma (MM) agent, potently induces endoplasmic reticulum (ER) stress to cause apopto...

متن کامل

Glucose Deprivation Induces ATF4-Mediated Apoptosis through TRAIL Death Receptors

Metabolic stress occurs frequently in tumors and in normal tissues undergoing transient ischemia. Nutrient deprivation triggers, among many potential cell death-inducing pathways, an endoplasmic reticulum (ER) stress response with the induction of the integrated stress response transcription factor ATF4. However, how this results in cell death remains unknown. Here we show that glucose deprivat...

متن کامل

Silibinin sensitizes TRAIL-mediated apoptosis by upregulating DR5 through ROS-induced endoplasmic reticulum stress-Ca2+-CaMKII-Sp1 pathway

In this study, we addressed how silibinin enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in various cancer cells. Combined treatment with silibinin and TRAIL (silibinin/TRAIL) induced apoptosis accompanied by the activation of caspase-3, caspase-8, caspase-9, and Bax, and cytosolic accumulation of cytochrome c. Anti-apoptotic proteins such as Bcl-2, ...

متن کامل

Thapsigargin sensitizes human esophageal cancer to TRAIL-induced apoptosis via AMPK activation

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent for esophageal squamous cell carcinoma (ESCC). Forced expression of CHOP, one of the key downstream transcription factors during endoplasmic reticulum (ER) stress, upregulates the death receptor 5 (DR5) levels and promotes oxidative stress and cell death. In this study, we show that ER stress mediate...

متن کامل

α-TEA induces apoptosis of human breast cancer cells via activation of TRAIL/DR5 death receptor pathway.

Vitamin E derivative RRR-α-tocopherol ether-linked acetic acid analog (α-TEA) induces apoptosis in MCF-7 and HCC-1954 human breast cancer cells in a dose- and time-dependent manner. α-TEA induces increased levels of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and death receptor-5 (DR5) and decreased levels of antiapoptotic factor, cellular FLICE-like inhibitory protein (c-FL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010